(anonymous)  •  log in  
Home   •   Rules   •   Objects   •   Census   •   Software   •   Syntheses   •   Statistics

p60 traffic light hassler (xp60_vtvx14441z757x41114y4o8gzy4888y1jpu121zy270ggg07x7fvzgggxg033gy1321e96zvuvy0iiiz323x2x2)

#C [[ GRID THUMBLAUNCH THUMBSIZE 2 THEME Catagolue ]]
x = 1, y = 1, rule = B3/S23
b!
This pattern is an oscillator.
This pattern is periodic with period 60.
This pattern runs in standard life (b3s23).
The population fluctuates between 105 and 164.
This evolutionary sequence works in multiple rules, from b3s23 through to b34q5i6es234cy5ck6eik.

Pattern RLE

Code: Select all

Glider synthesis

Code: Select all
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH xp60_vtvx14441z757x41114y4o8gzy4888y1jpu121zy270ggg07x7fvzgggxg033gy1321e96zvuvy0iiiz323x2x2 costs 48 gliders (true).
#CLL state-numbering golly
x = 958, y = 61, rule = B3/S23
187bo$187bobo$187b2o3$12bo$10b2o$11b2o2$29bo102bo$27b2o102bo$28b2o
101b3o$128bo$129bo$127b3o49b2o$61b2o60b2o10b2o36b2o3bo2bo3b2o34b2o
10b2o39b2o10b2o44b2o10b2o47b2o10b2o45b2o4b2o4b2o57b2o4b2o4b2o50b2o
4b2o4b2o53b2o10b2o56b2o10b2o56b2o10b2o60b2o4b2o4b2o52b2o10b2o$60bo
2bo8bo49bo2bo8bo2bo34bo2bo3b2o3bo2bo32bo2bo8bo2bo37bo2bo2b4o2bo2bo
42bo2bo8bo2bo45bo2bo8bo2bo43bo2bobo4bobo2bo55bo2bobo4bobo2bo48bo2b
obo4bobo2bo51bo2bo8bo2bo54bo2bo8bo2bo54bo2bo8bo2bo58bo2bobo4bobo2b
o50bo2bo8bo2bo$60b3o7bobo49b3o10b3o34b3o10b3o32b3o2b6o2b3o37b3o2b
6o2b3o42b3o10b3o45b3o10b3o43b3o10b3o55b3o10b3o48b3o10b3o51b3o2b6o
2b3o54b3o10b3o54b3o10b3o58b3o10b3o50b3o10b3o$4bobo56b3o5b2o52b3o4b
3o40b3o4b3o38b2o6b2o43b10o48b10o51b10o49b2o6b2o61b2o6b2o54b2o6b2o
57b2o6b2o60b10o60b10o64b2o6b2o56b10o$5b2o55bo2bo9bobo46bo2bo4bo2bo
38bo2bo4bo2bo36bo10bo41bo10bo46bo2b6o2bo49bo2b6o2bo47bo2b6o2bo59bo
2b6o2bo52bo2b6o2bo55bo10bo58bo2b6o2bo58bo2b6o2bo62bo2b6o2bo54bo2b
6o2bo$5bo56b2o11b2o47b2o8b2o38b2o8b2o36b2obo4bob2o5bo35b2o8b2o46b
2o2b4o2b2o49b2o2b4o2b2o47b2o8b2o59b2o8b2o46bo5b2o8b2o55b2obo4bob2o
58b2o2b4o2b2o58b2o2b4o2b2o62b2o8b2o54b2o2b4o2b2o$76bo150b2o10bobo
233bo7bobo94bobo77b2o186bobo7bo$239b2o234bobo5b2o96b2o266b2o5bobo$
2bo354bo117b2o7bo227bo136bo7b2o$obo354bobo109bo51bo188bobo151bo$b
2o4bo233b2o41b2o56b2o13b2o44b2o57b2o5bobo50bo56b2o75b2o53b2o13b2o
68b2o64bobo5b2o$5b2o174b3o56b2o42b2o56b2o59b2o57b2o5b2o3bo45b3o15b
2o4b2o34b2o12bo61b2o3bo64b2o3bo7b2o4b2o49b2o3bo57bo3b2o5b2o3bo7b2o
4b2o50bo$6b2o173bo60bo45bo57bo60bo58bo6bobo40b2o19bo2bo2bo2bo32bo
13bobo7bo4bo44bo6bobo6b2ob2ob2o46bo6bobo5bo2bo2bo2bo45bo6bobo7bob
2obo42bobo6bo6bobo5bo8bo33b2ob2ob2o7bobo6b2ob2ob2o$72b2o103b2o3bo
104bobo55bobo11b3o44bobo4b3o2b2o45bobo5bo2bo40b2o18b2o6b2o46bobo7b
6o43bobo5bobo6b2o4b2o31b3o11bobo5bobo5bo2bo2bo2bo33b2o2b3o4bobo5bo
bo6b2ob2ob2o40bo2bo5bobo5bobo4bo2bo4bo2bo32b2o4b2o7bobo6b2o4b2o$
73b2o101bobo108bobo55bobo11bo46bobo9bobo44bobo6b2o40bo20b2o6b2o47b
o8bo4bo43bobo6bo7b2ob2ob2o33bo11bobo6bo7bob4obo33bobo9bobo6bo8bob
2obo42b2o6bobo6bo6bo8bo33b2ob2ob2o8bo7b2ob2ob2o$72bo105bo109bo57bo
13bo46bo10bo47bo72b2o2b2o108bo55bo13bo17bo2bo37bo10bo73bo15b2o4b2o
$79b2o87b2o355b2o145b2o254b2o22b2o$68b3o7b2o89b2o120bobo116b4o112b
2o120bobo19bo4bo111b4o20b4o111bo4bo18bo4bo$70bo9bo8b2o77bo122b2o
53b2o6b2o53b6o110bo77b6o40b2o18bo6bo37b2o6b2o14b2o6b2o38b6o18b6o
109bo6bo16bo6bo$69bo19bobo200bo5bo45bo4bo2bo4bo50b8o48b2o3bo2bo3b
2o58bo2bob2obo2bo54bo6bo33bo5bo18bo8bo34bo4bo2bo4bo10bo4bo2bo4bo
35b8o16b8o39b2o3bo2bo3b2o10b2o3bo2bo3b2o30bo8bo14bo8bo$89bo208bobo
43bo4bo2bo4bo49b2o6b2o47b5o4b5o57b2o2bo4bo2b2o52bo8bo30bobo24bo8bo
34bo4bo2bo4bo10bo4bo2bo4bo34b2o6b2o14b2o6b2o38b5o4b5o10b5o4b5o30bo
8bo14bo8bo$234b3o61b2o44bo4bo2bo4bo50b8o48b2o3bo2bo3b2o58bo2bob2ob
o2bo37b3o14bo6bo32b2o24bo8bo34bo4bo2bo4bo10bo4bo2bo4bo35b8o16b8o
39b2o3bo2bo3b2o10b2o3bo2bo3b2o30bo8bo14bo8bo$236bo56b3o50b2o6b2o
53b6o170bo17b6o37b3o20bo6bo37b2o6b2o14b2o6b2o38b6o18b6o109bo6bo16b
o6bo$185bo49bo59bo114b4o172bo59bo23bo4bo111b4o20b4o111bo4bo18bo4bo
$184b2o108bo352bo24b2o254b2o22b2o$184bobo13$943bo$936bo5b2o$937bo
4bobo$935b3o2$939b3o$941bo$940bo!

Sample occurrences

There are 12 sample soups in the Catagolue:

Unofficial symmetries

SymmetrySoupsSample soup links

b3s23osc_stdin 12                 

Comments (1)

Displaying comments 1 to 1.

On 2016-12-23 at 17:09:51 UTC, paulrw63@live.com wrote:

By P60, most oscillators are combinations of lower-period oscillators that hassle or induct matter that otherwise would not oscillate.

Most long-period oscillators also are herschel systems, but, like prime numbers, non-Herschel oscillators get ever rarer,but never disappear entirely.

Please log in to post comments.

Catagolue — the largest distributed search of cellular automata.