(anonymous)  •  log in  
Home   •   Rules   •   Objects   •   Census   •   apgsearch   •   Syntheses   •   Statistics

p60 hassler (xp60_vtvx14441z757x41114y4o8gzy4888y1jpu121zy270ggg07x7fvzgggxg033gy1321e96zvuvy0iiiz323x2x2)

There is currently no description assigned to this pattern.

This pattern is a oscillator.
This pattern is periodic with period 60.
This pattern runs in standard life (b3s23).
The population fluctuates between 105 and 164.
This evolutionary sequence works in multiple rules, from b3s23 through to b34q5i6es234cy5ck6eik.

Pattern RLE

Code: Select all

Glider synthesis

Code: Select all
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH xp60_vtvx14441z757x41114y4o8gzy4888y1jpu121zy270ggg07x7fvzgggxg033gy1321e96zvuvy0iiiz323x2x2 costs 69 gliders (true).
#CLL state-numbering golly
x = 1210, y = 63, rule = B3/S23
20bo$19bo$19b3o5$119bobo$119b2o$115bo4bo136bobo$114bo49bo93b2o$o
113b3o47bobo36bo54bo$b2o106bobo48bo3b2o38bo$2o108b2o49bo40b3o$10bo
99bo48b3o45bo$4b2o3b2o195bo$5b2o2bobo194b3o50b2o$4bo54b2o39b2o51b
2o9b2o33b2o10b2o40b2o3bo2bo3b2o48b2o4b2o4b2o43b2o4b2o4b2o53b2o4b2o
4b2o51b2o4b2o4b2o32bo23b2o10b2o54b2o10b2o60b2o4b2o4b2o43b2o4b2o4b
2o47b2o4b2o4b2o56b2o4b2o4b2o54b2o4b2o4b2o56b2o10b2o56b2o4b2o4b2o
60b2o10b2o$58bo2bo37bo2bo49bo2bo8bo2bo30bo2bo8bo2bo38bo2bo3b2o3bo
2bo46bo2bobo4bobo2bo41bo2bobo4bobo2bo51bo2bobo4bobo2bo49bo2bobo4bo
bo2bo32bo21bo2bo8bo2bo52bo2bo8bo2bo58bo2bobo4bobo2bo41bo2bobo4bobo
2bo45bo2bobo4bobo2bo54bo2bobo4bobo2bo52bo2bobo4bobo2bo54bo2bo8bo2b
o54bo2bobo4bobo2bo58bo2bo8bo2bo$52bobo4b2o38b3o50b3o10b3o30b3o10b
3o38b3o10b3o46b3o10b3o41b3o10b3o51b3o10b3o49b3o10b3o30b3o21b3o2b6o
2b3o52b3o10b3o58b3o10b3o41b3o10b3o45b3o10b3o54b3o10b3o52b3o10b3o
54b3o2b6o2b3o54b3o10b3o58b3o10b3o$53b2o6b3o38b3o50b3o4b3o36b3o4b3o
44b3o4b3o52b2o6b2o47b2o6b2o57b2o6b2o55b2o6b2o60b2o6b2o58b10o64b2o
6b2o47b2o6b2o51b2o6b2o60b2o6b2o58b2o6b2o60b2o6b2o60b2o6b2o64b10o$
53bo7bo2bo36bo2bo49bo2bo4bo2bo34bo2bo4bo2bo42bo2bo4bo2bo50bo2b6o2b
o45bo2b6o2bo55bo2b6o2bo53bo2b6o2bo58bo10bo56bo2b6o2bo62bo2b6o2bo
45bo2b6o2bo49bo2b6o2bo58bo2b6o2bo56bo2b6o2bo58bo10bo58bo2b6o2bo62b
o2b6o2bo$62b2o37b2o51b2o8b2o34b2o8b2o42b2o8b2o50b2o8b2o45b2o8b2o
55b2o8b2o53b2o8b2o58b2obo4bob2o56b2o2b4o2b2o62b2o8b2o45b2o8b2o49b
2o8b2o58b2o8b2o56b2o8b2o58b2obo4bob2o58b2o8b2o62b2o2b4o2b2o$249bo
9b2o9bo309b2o149bo316b2o85bo7bobo$54b2o194bo7bo2bo7bo460bo404bobo
5b2o$55b2o56bo134b3o7bo2bo7b3o458b3o126bo275b2o7bo$54bo4b2o51b2o
145b2o598bobo267bo$58bobo5b3o43bobo137b3o10b3o41bobo281bo76bo112b
2o59b2o13b2o53b2o66b2o68b2o68b2o5bobo$60bo5bo40b3o144bo10bo44b2o
281bobo37b2o4b2o27b2o52bo4b3o49bo3b2o3bo51bo3b2o64bo3b2o62bo3b2o
10bo38b2o4b2o7bo3b2o10bo38b2o4b2o7bo3b2o5b2o3bo57bo$67bo41bo143bo
12bo37bo5bo50bo2bob2obo2bo55bo2bob2obo2bo53bo2bob2obo2bo57bo2b2o4b
2o2bo17b2o37bo2bo2bo2bo27b2o36b2ob2ob2o6bobo3bo36b2ob2ob2o6bobo7bo
bo34b2ob2ob2o6bobo6bo46b2ob2ob2o6bobo6bo44b2ob2ob2o6bobo6bo6bobo
36bo2bo2bo2bo5bobo6bo6bobo36bo8bo5bobo6bo6bobo41b2ob2ob2o6bobo7b2o
b2ob2o$103bo4bo139b2o20b2o30bobo55b2o2bo4bo2b2o53b2o2bo4bo2b2o51b
2o2bo4bo2b2o55bo3b3o2b3o3bo21bo33b2o6b2o31b2o32b2o4b2o6bobo4bo35b
2o4b2o6bobo7b2o35b2o4b2o6bobo5bobo11b3o31b2o4b2o6bobo5bobo4b3o2b2o
32b2o4b2o6bobo5bobo5bo2bo35b2ob4ob2o5bobo5bobo5bo2bo34bo2bo4bo2bo
4bobo5bobo5bo2bo40b2o4b2o6bobo7b2o4b2o$103b2o97b3o44b2o18b2o32b2o
56bo2bob2obo2bo55bo2bob2obo2bo53bo2bob2obo2bo57bo2b2o4b2o2bo21b2o
33b2o6b2o31bobo31b2ob2ob2o7bo41b2ob2ob2o7bo45b2ob2ob2o7bo6bobo11bo
33b2ob2ob2o7bo6bobo9bobo31b2ob2ob2o7bo6bobo6b2o37bob4obo7bo6bobo6b
2o36bo8bo6bo6bobo6b2o41b2ob2ob2o7bo8b2ob2ob2o$102bobo99bo3bo39bo
22bo35b3o287bobo34b2o2b2o33bo117b2o55bo13bo55bo10bo56bo47b2o2b2o
16bo46b2o4b2o15bo$203bo3b2o98bo113bo24bo263b2o55b2o22bobo34b2o68b
2o66b2o212b2o22b2o$207bobo98bo110bobo24bobo145bo75b2o36bo4bo51bo4b
o20bo34bo4bo64bo4bo62bo4bo208bo4bo18bo4bo$216bo203b2o24b2o146b2o
73bobo35bo6bo49bo6bo53bo6bo62bo6bo60bo6bo15bo69bo8bo111bo6bo16bo6b
o$215b2o342bo18bo14bobo35bo2bob2obo2bo28bo34bo8bo47bo8bo51bo8bo60b
o8bo58bo8bo14bo44bo2bob2obo2bo13bo8bo34b2o3bo2bo3b2o10b2o3bo2bo3b
2o38bo8bo14bo8bo$215bobo340bobo16bobo50b2o2bo4bo2b2o62bo8bo47bo8bo
51bo8bo60bo8bo58bo8bo14bo44b4ob2ob4o13bo8bo34b5o4b5o10b5o4b5o38bo
8bo14bo8bo$417b3o28b3o34b2o2b3o14b3o2b2o44bo2bo16bo2bo50bo2bob2obo
2bo63bo8bo47bo8bo51bo8bo60bo8bo58bo8bo59bo2bob2obo2bo57b2o3bo2bo3b
2o10b2o3bo2bo3b2o38bo8bo14bo8bo$373bo45bo28bo35bobo24bobo44b2o18b
2o127bo6bo49bo6bo53bo6bo62bo6bo60bo6bo81b3o12b3o107bo6bo16bo6bo$
372bo45bo18b2o10bo36bo15b2o7bo60b2o134bo4bo51bo4bo55bo4bo64bo4bo
19b3o40bo4bo28b3o53bo12bo110bo4bo18bo4bo$368bo3b3o61bobo62bobo67bo
bo136b2o55b2o59b2o68b2o21bo44b2o30bo54bo14bo111b2o22b2o$368b2o67bo
64bo63b2o4bo84b2o258b2o3bo71b2o3bo$367bobo195b2o90bobo256bobo74bob
o$567bo89bo260bo76bo$571b2o$571bobo$571bo$567b2o$566bobo$568bo5$
1190bo$1190b2o5bo$1189bobo4bo$1196b3o2$1192b3o$1192bo$1193bo!

Sample occurrences

There are no sample soups stored in the Catagolue.

Comments (1)

Displaying comments 1 to 1.

On 2016-12-23 at 17:09:51 UTC, paulrw63@live.com wrote:

By P60, most oscillators are combinations of lower-period oscillators that hassle or induct matter that otherwise would not oscillate.

Most long-period oscillators also are herschel systems, but, like prime numbers, non-Herschel oscillators get ever rarer,but never disappear entirely.

Please log in to post comments.

Catagolue — the largest distributed search of cellular automata.