(anonymous)  •  log in  
Home   •   Rules   •   Objects   •   Census   •   Software   •   Syntheses   •   Statistics

xp6_wgbb88gz320fge8b426zy023

#C [[ GRID THUMBLAUNCH THUMBSIZE 2 THEME Catagolue ]]
x = 1, y = 1, rule = B3/S23
b!
This pattern is an oscillator.
This pattern is periodic with period 6.
This pattern runs in standard life (b3s23).
The population fluctuates between 32 and 34.
This evolutionary sequence works in multiple rules, from b3-aceys2-n3-ijy through to b2in34cey5cin6cn7c8s01c234-inz5678.

Pattern RLE

Code: Select all

Glider synthesis

Code: Select all
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH xp6_wgbb88gz320fge8b426zy023 costs 114 gliders (true).
#CLL state-numbering golly
x = 1297, y = 50, rule = B3/S23
199bo11bo$200bo9bo119bo$198b3o9b3o116bo69bo$318bobo8b3o65b2o$208bo
110b2o77b2o$209bo109bo7bo$207b3o16bo98bobo455bo$224b2o100b2o456bo
100bo233bobo$225b2o147bo407b3o101bo103bo121bo6b2o$330bo41bobo121bo
290bobo94b3o51bo50bo123bo6bo3bo6bo$330bobo34bobo3b2o120bo291b2o
100bo38bo8bo51b3o119b3o9bo6bo$203bobo13bobo108b2o36b2o125b3o127bo
162bo99bo37bobo8b3o183b3o4b3o$204b2o13b2o147bo123bo130bobo262b3o
36b2o4b2o51b2o38bo200bo$63bo140bo15bo154b2o116bo51bo37bo40b2o48bo
257bo2bo50b2o37bo202bo$20bo41bo44bo268b2o4b2o107b3o50bo39bo3bobo
41bobo39bobo119bo136b2o90b3o85bo112b3o$18b2o42b3o42bobo265bo6b2o
53bo99bo6b3o35b3o3b2o42b2o34bobo3b2o120bobo139bobo170bobo$19b2o86b
2o328bobo98bo40bo9bo43bo35b2o125b2o52bo87b2o172b2o$437b2o16bo80b3o
2b2o36b2o88bo44b2o64b2o8b2o45b2o9b2o34b2o44b2o7bo4bo33b2o43b2o49bo
$61bo212b2o51b2o52b2o50bo8b2o10bo40b2o36bo8bo35bobo46bo7b3o76bobo
63bobo7bobo6bo37bobo9b2o33bobo43bobo11bobo31bobo42bobo47bo$59b2o
211bo2bo49bo2bo52bo2bo49b2o6bo3bo7b3o38bo3bo33b2o6bo3bo39b2o39bobo
6bo39bo2bo37bo2bo62bo2bo4bo8bobo37bo46bo45bo11b2o34bo44bo40bo6b3o
33b3o7bo5b2o57b2o45bobo7b2o44b2o$60b2o39bo170b3o50b3o54b3o48b2o8b
4o41bo7b4o32bobo7b4o39b2o39b2o8bo38b4o37b4o62b4o13b2o38b2o45b2o44b
2o46b3o42b3o38b3o42bo7b3o3b2o57bo47b2o7bo45bo$o7bo43bo46bobo6bo51b
o51bo10b3o262b2o313bo38b2o45b2o3b2o39b2o3b2o41bo44bo40bo40bo11bo
12b2o32bo15bo37bo8bo9bo45bo$b2o3b2o43bobo11bo34b2o5bobo49bobo49bob
o9bo46b3o50b3o54b3o58b4o42bobo4b4o42b4o41b4o37b4o45b4o37b4o62b4o
17bobo33b3obo6b3o33b3obo4bo36b3obo4bo38b3obo40b3obo36b3obo5b3o40b
3obo10b2o31bobo12b3obo37b2o2b2o9b3obo41b3obo$2o5b2o43bo5b2o4bo43bo
bob2obo42bobobob2obo42bobobob2obo4bo44bobobob2obo43bobobob2obo47bo
bobob2obo6b2o43bo4bob2obo42bo2bobob2o37bo2bobob2o36bo2bobob2o32bo
2bobob2o40bo2bobob2o32bo4bob2o57bo4bob2o13b2o33bo4bob2o3bo34bo4bob
3o36bo2bobob3o38bo4bo39bo4bo35bo4bo5bo41bo4bo12bo31b2o11bo4bo36b2o
2bobo8bo4bo38bobo2bobo$57b2o5b3o43bobob2o37bo5bo2bobob2o42bo3bobob
2o49bo3bobob2o43bo3bobob2o35bo11bo3bobob2o6bobo43bobobobob2o41bobo
2b2obo37bobo2b2obo36bobo2b2obo32bobo2b2obo40bobo2b2obo32bobobobobo
57bobo3bobo48bobobobobo5bo32bobobobobo37bobobobobo39bobobobob2o35b
obobobob2o31bobobobob2o3bo39bobobobob2o53bobobobob2o39bo7bobobobob
2o35b2ob2o2bob2o$53bo5bo37b3o10bo35b3o5b2o6bo42b2obobo3bo49b2obobo
3bo43b2obobo3bo38bobo6b2obobo3bo11bo40b2obobobobo46bob2o2bobo37bob
2o2bobo36bob2o2bobo32bob2o2bobo40bob2o2bobo32bobobobobo57bobo3bobo
48bobob3obo38bobob3obo37bobobobobo3bobo33bobob3o2bo35bobob3o2bo31b
obob3o2bo43bobob3o2bo53bobob3o2bo47bobob3o2bo38bo2b2o2bo$5b2o45bob
o44bo8bobo37bo4b2o5bobo42bob2obobobo44bo4bob2obobobo43bob2obobobo
39b2o6bob2obobobo52bob2obo4bo44b2obobo2bo37b2obobo2bo36b2obobo2bo
32b2obobo2bo40b2obobo2bo32b2obo4bo57b2obo4bo48b2obo4bo38b2obo4bo
37b2obo4bo4b2o33b2obo4bo36b2obo4bo32b2obo4bo44b2obo4bo45b2o7b2obo
4bo48b2obo4bo40bo4bo$4b2o45bobo44bo8bobo37bo11bobo49bobo46bo9bobo
50b3o54b3o59b4o49b4o42b4o41b4o37b4o45b4o37b4o62b4o3b2o48b4o43b4o
42b4o6bo37b4o41b4o37b4o49b4o47b2o10b4o46bo6b4o42b4o$6bo45bo55bo51b
o51bo45b3o10bo517bo2bo377bo61bobo$151b2o168b3o54b3o59b4o8b2o39b4o
42b4o41b4o37b4o45b4o37b4o62b4o5bobo45b4o43b4o42b4o44b4o41b4o37b4o
49b4o59b4o48b2o3b4o44b2o$152b2o166bo2bo54bo2bo48b3o7bo3bo6b2o40bo
3bo41bo3bo40bo3bo36bo3bo44bo3bo36bo3bo61bo3bo5bo46bo3bo42bo3bo41bo
3bo43bo3bo40bo3bo36bo3bo48bo3bo50b2o6bo3bo52bo3bo43b2o$151bo168b2o
58b2o50bo10b2o8bo42b2o44b2o43b2o39b2o47b2o39b2o64b2o55b2o45b2o44b
2o46b2o43b2o39b2o51b2o49bobo9b2o55b2o$431bo16b2o724bo$447bobo296bo
bo50b3o140b2o$148b3o228b2o6bo61bo291bobo2b2o51bo141b2o347bo$150bo
228b2o4b2o355b2o3bo52bo142bo339b2o5b2o3bo$149bo113bo15bo106b2o354b
o477b2o3b2o55bobo4bobo2b2o$263b2o13b2o114bo390b2o434b2o3b2o56bo9bo
bo$262bobo13bobo36b2o74b2o389bobo433bo4bo6b2o$316bobo69b2o3bobo
390bo444bobo16b2o$318bo69bobo331bo510bo15b2o$257b2o129bo333b2o527b
o42b2o$258b2o61b2o398bobo570bobo$257bo16b3o44bobo970bo$274bo46bo7b
o$275bo52b2o33b2o$317b3o8bobo33b2o$271b3o9b3o33bo43bo$273bo9bo34bo
$272bo11bo!

Sample occurrences

There are 14 sample soups in the Catagolue:

Unofficial symmetries

SymmetrySoupsSample soup links

b3s23osc_stdin 13                  

oscstdin 1  

Comments (4)

Displaying comments 1 to 4.

On 2025-01-03 at 23:20:14 UTC, nikro846 wrote:

Why is it called $rats, anyway?

On 2019-05-25 at 13:03:50 UTC, Someone wrote:

rats, rats, we are the rats

On 2018-04-02 at 14:54:00 UTC, Someone wrote:

32P6.7 w Pentadecathlonie

On 2018-02-28 at 10:56:17 UTC, Someone wrote:

$rats.

Please log in to post comments.

Catagolue — the largest distributed search of cellular automata.