(anonymous)  •  log in  
Home   •   Rules   •   Objects   •   Census   •   Software   •   Syntheses   •   Statistics

Pinwheel (xp4_gg0g88bbgz11078c9a7066zy033)

#C [[ GRID THUMBLAUNCH THUMBSIZE 2 THEME Catagolue ]]
x = 1, y = 1, rule = B3/S23
b!
This pattern is an oscillator.
This pattern is periodic with period 4.
This pattern runs in standard life (b3s23).
The population is constantly 35.
This evolutionary sequence works in multiple rules, from b3iks2ik3aeinr through to b2in34-intw5aceiy678s01e234-n5678.

Pattern RLE

Code: Select all

Glider synthesis

Code: Select all
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH xp4_gg0g88bbgz11078c9a7066zy033 costs 164 gliders (true).
#CLL state-numbering golly
x = 1758, y = 86, rule = B3/S23
1011bo$1012b2o$1011b2o32bo$1043b2o$1037bo6b2o$1036bo$1036b3o$994bo
$984bobo8b2o$985b2o7b2o$985bo2$991bo$989bobo48bo$990b2o48bobo$
1040b2o$1051bobo$1044bo6b2o$1044bobo5bo$1044b2o2$1549bo$1360bo189b
o104bo$914bo347bo98bo175bo10b3o2bobo99bobo$912b2o5bo67bo216bobo55b
obo40bo53b3o173bobo15b2o100b2o$913b2o3bo68bobo209bo5b2o11bo43b2o
42b2o228b2o16bo$918b3o66b2o18b2o191b2o3bo10b2o33bo53b2o137bo55bo$
1008b2o189b2o16b2o33b2o2bobo186b2o53bobo42bo6bo$o5bo770bo195bo33bo
5b2o177bo58b2o4b2o49bo103bo31b2o49bo4b2o41bobo4bobo92bo9bobo$b2o3b
obo766b2o42bo6bo36bo48b2o4bo52bobo39bobo177bo63bo3bobo44bobo55bo
44bo36bobo2bobo40bo47b2o5b2o90bobo4bobo2b2o$2o4b2o141bobo624b2o40b
obo4bo36bobo48b2o2bobo52b2o41bo175b3o67b2o38bo6b2o40bo15bobo42b3o
35b2o2b2o39b3o147b2o5b2o3bo$104bo45b2o363bo302b2o5b3o34b2o48bo4b2o
96b2o233bo11bo39b2o44bobo15b2o81bo4bo45bo150bo$102bobo45bo68bo295b
obo4bo160bo95bobo413b3o52b2o49b2o46b2o149bobo86bo4bo$103b2o50bobo
60bo196bo40b2o3bobo44b2o5b2o3b2o159b2o42b2o3bobo41b2o3b2o37b2o3bo
38b2o53b2o96b2o180bo51bobo4bo49b2o45b2o54b2o89b2o88bo4b2o$107bo48b
2o60b3o48bo146b2o37bobo3b2o44bo2bo10b2o107bo51b2o40bobo3b2o41bo2bo
3bo36bo2bobobo36bo2bo51bo2bo94bo2bo76b2o54b2o44bo10b2o46bobo39b3o
6bobo4b2o37bobo4b2o7b3o31b2o5bobo40b2o93b2o2b2o35b3o3b2o$107bobo
37bo2bobo3bo50bo62b2o143b2o40bo4bo44bo2bo54bo63bo41bo54bo4bo41bo2b
o40bo2bob2o37bo2bo51bo2bo94bo2bo76bo2bo2bo49bo2bo2bo50bo2bo2bo42bo
2bo2bo36bo7bo2bo3bo38bo3bo2bo7bo33bo3bo4bo40bo3bo38bo2bo48bo4bo52b
2o40b2o45b2o9bo46b2o$51bo55b2o36bobo3b2o9b2o44b2o6bo52b2o237b2o53b
2o64b3o40bo101b2o42b2o42b2o53b2o96b2o78b6o50b6o51b6o43b6o35bo9b6o
40b6o9bo33b8o42b4o38b4o49b4o53b2o40b2o45b2o8bo47b2o$b2o9bo37bo95b
2o3bo10b2o43b2o8bo202bo80b2o16b2o37bobo3b2o59bo44b3o464bo457b2o
107b3o$2b2o3bo3bo34bo3b3o3b2o52b2o54b2o47b3o9b2o34bo16b2o39b2o41b
2o47b2o3b2o46b2o32bobo10b2o3b2o5b2o32b2o11b2o14bobo32bobo8b2o52b2o
44b2o42b2o42b2o42b2o11bo41b2o96b2o76b4o37b2o13b4o53b4o45b4o47b4o
42b4o45b4o46b4o38b4o49b4o42b2o7b4o38b4o41b4o54b4o$bo5b2o2b3o30bobo
9bobo51bobo53bobo55bo2bobo33b2o12bo2bobo35bo2bobo37bo2bobo43bo2bob
o3b2o42bo2bo35bo7bo2bo6bo3b2o33bo11bo2bo13b2o34b2o7bo2bo50bo2bo42b
o2bo40bo2bo40bo2bo40bo2bo10bobo38bo2bo94bo2bo74bo2bobob2o32b2o13bo
4bob2o48bo4bob2o40bo4bob2o42bo4bob2o37bo4bob2o40bo4bob2o41bo4bob2o
33bo4bob2o44bo4bob2o37bo8bo4bob2o30b2obo4bob2o33b2obo4bob2o46b2obo
4bo$6bobo36b2o7bobobo49bobobo40b2o9bobobo54bobobobo32bobo2bob2ob2o
2bobobobo34bobobobo36bobobobo5bo36bobobobo46bobobo42bobobo12bo43bo
bobo8bo5bo42bobobo49bobobo41bobobo39bobobo39bobobo39bobobo10b2o38b
obobo93bobobo65bobo6bobo2bob2o36b3o4b2o2bo2bobob2o48bo2bobob2o40bo
2bobob2o42bo2bobob2o37bo2bobob2o40bo2bobob2o41b2o3bob2o33bo2bobob
2o44bo2bobob2o46bo2bobob2o30b2obo2bobob2o33b2obo2bobob2o46b2obo2bo
bo$53bobobo46b2obobobo40bobo5b2obobobo54bobobobo38b2obobo2bobobobo
31b2obobobobo33b2obobobobo6bobo30b2obobobobo7b2o34b2obobobob2o36b
2obobobob2o50b2obobobob2o6bobo42b2obobobob2o41bob2obobobob2o35b2ob
obobob2o33b2obobobob2o33b2obobobob2o33b2obobobob2o44b2obobobob2o
87b2obobobob2o64b2o3b2obo3b2o41bo4bobobo3b2o48b2obo3b2o40b2obo3b2o
42b2obo3b2o37b2obo3b2o40b2obo3b2o41b2obo2bobo33b2obo3b2o44b2obo3b
2o46b2obo3b2o36bo3b2o39bo3b2o52bo3b2ob2o$53bo2bo34bo11bobobo2bo43b
o4bobobo2bo37b2o16bobo2bo43bo2b2obo2bo32bob2obo2bo34bob2obo2bo7b2o
31bob2obo2bo3bo4bobo33bob2obo2bo2bo35bob2obo2bo2bo49bob2obo2bo2bo
5b2o38bo3bo2b2obo2bo2bo40b2obobobo2bo2bo33bobobobo2bo2bo31bobobobo
2bo2bo31bobobobo2bo2bo31bobobobo2bo2bo42bobobobo2bo2bo3b2o80bobobo
bo2bo2bo3b2o58bo3bobobo4bo34b2o4bo7bobobo2bo48b2obobo2bo40b2obobo
2bo42b2obobo2bo37b2obobo2bo40b2obobo2bo41b2obobo2bo33b2obobo2bo44b
2obobo2bo46b2obobo2bo36bobo2bo39bobo2bo8bo43bobo2bob2o$47b3o4b2o
33bobo4bo7bo3b2o39bo10bo3b2o39b2o3b2o8b2o3b2o51b2o39b2o41b2o47b2o
3bobo3bo41b2o2b2o41b2o2b2o40bo14b2o2b2o43bobo2bobo5b2o2b2o44bo3b2o
2b2o33bo2bo3b2o2b2o31bo2bo3b2o2b2o31bo2bo3b2o2b2o31bo2bo3b2o2b2o4b
3o35bo2bo3b2o2b2o3b2o31bo12b2o34bo2bo3b2o2b2o3b2o62bobo2b4o34bobo
12bo2b4o53b4o45b4o47b4o42b4o45b4o46b4o38b4o49b4o51b4o38b4o41b4o7b
2o45b4o$49bo40b2o5b2o48bobo54bo6b2o7bo102bo45b2o45bobo139b2o62b2o
3bo98b2o42b2o42b2o42b2o16bo36b2o49bo12b2o32b2o71b2o7b2o42bo10bobo
443b3o107b2o$48bo47b2o50b2o6bo53bo6b2obo102bobo36b2o5bobo39b2o4bo
46b2o45b2o44b2o3b2o8b2o11b3o46b2o2b2o48b2o2b2o40b2o2b2o38b2o2b2o
38b2o2b2o38b2o2b2o5bo43b2o2b2o35b3o11bo42b2o2b2o60b2o12b2o47b2o5b
2o55b2o47b2o49b2o44b2o47b2o48b2o40b2o51b2o42bo10b2o40b2o43b2o56b2o
$156b3o10bo47b2ob2o48b3o50b2o37b2o5bo41b2o51b2o45b2o50b2o7b2o11bo
48b2o2b2o48b2o2b2o40b2o2b2o38b2o2b2o38b2o2b2o38b2o2b2o49b2o2b2o92b
2o2b2o59bo14b2o54b2o55b2o47b2o49b2o44b2o47b2o48b2o40b2o51b2o41bo
11b2o40b2o43b2o56b2o$159bo8bo91b3o7bo291bo23bo554b3o561b2o3b3o$95b
o62b2o8b3o91bo8bo145b3o138b2o115b3o287b3o4b2o169bo560b2o4bo$95b2o
2b3o42b2o19bo95bo3b3o47bo101bo139bobo21b2o94bo289bo3b2o122b2o45bo
8b2o553bo4bo$94bobo4bo41bobo18b2o51b2o48bo47b2o2b3o96bo140bo3b3o
15bobo92bo3b2o284bo6bo121b2o54b2o596bo$100bo44bo18bobo4b3o44b2o46b
o47bobo2bo243bo17bo98bobo1061bo3b2o5b2o$151b3o17bo45bo102bo243bo
115bo463bo599b2o2bobo4bobo$153bo7b2o9bo817b2o152b2o597bobo9bo$152b
o7b2o398b3o426bobo151bobo$162bo399bo428bo57bo$212b2o347bo486b2o$
158b2o53b2o833bobo693b2o$157bobo52bo1530bobo$159bo1585bo3$152b2o$
151bobo859bo$153bo857bobo34bo$995b2o15b2o33b2o$989b2o3bobo50bobo$
990b2o4bo$989bo50bo3b2o$1039b2o3bobo$1034b3o2bobo2bo$1034bo$1035bo
7$1036b2o$1035b2o$1037bo2$1016b2o$1015bobo$1017bo!

Sample occurrences

There are 14 sample soups in the Catagolue:

Unofficial symmetries

SymmetrySoupsSample soup links

b3s23osc_stdin 13                  

oscstdin 1  

Comments (4)

Displaying comments 1 to 4.

On 2021-04-07 at 11:30:56 UTC, Ignacy.Jackl wrote:

There are no soups because that thing is very artificial, and also asymmetric.

On 2021-04-07 at 11:28:29 UTC, Ignacy.Jackl wrote:

Synthesis components:

Loaf at R-bee synthesis - 5G

Boat on domino placement - 3G

Block synthesis - 2G

edgy Eater synthesis - 4G

Block+Boat+Eater -> siamese Tub with domino with block-on-table - 14G

Domino with block-on-table -> Carrier and snake +1 - 7G

Carrier an snake +1 -> Snake - 5G

Block on domino placement - 3G

Beehive synthesis - 2G

R-bee + Beehive -> Tail + siamese Claw - 4G

Pond synthesis - 2G

Tail + Pond -> siamese Loaf - 5G

Snake -> Shillelagh with tub - 7G

one-sided Block on boat-bit - 4G

Claw with tub -> Snake +1 - 3G

Snake -> Eater - 4G

Double boat-bit on pond - 2G

Boat deletion - 1G

Block synthesis - 2G

Boat -> Eater - 4G

Rotor ignition (main step) - 15G + 3LWSS + 1MWSS = 27G

Cap -> Dock - 2G

Dock + Block -> Block - 5G

Bookend -> Bookend with tub - 5G

Tub -> Boat - 2G

Table -> Long hook - 3G

Bookend with trans-boat siamese long hook -> Long hook with cis-boat siamese bookend - 4G

Cis-boat -> Eater head - 1G

Bookend -> Very long hook with curl - 3G

Very long hook with curl deletion - 1G

Long hook -> Table - 3G

Table -> Dock - 3G

Dock -> Block - 5G

Block -> Boat - 3G x4

Boat -> Cap - 2G

Cap -> Dock - 2G

Dock -> Block - 5G

Boat -> shifted Block - 5G x2

Boat -> Cap - 2G

Cap -> Dock - 2G

Dock -> Block - 5G

On 2018-12-31 at 21:59:37 UTC, Someone wrote:

No soups? What?

On 2018-02-28 at 07:44:22 UTC, Someone wrote:

This is Pinwheel (aka Catherine wheel).

Please log in to post comments.

Catagolue — the largest distributed search of cellular automata.