Pinwheel (xp4_gg0g88bbgz11078c9a7066zy033)
|
|
Pattern RLE
Glider synthesis
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH xp4_gg0g88bbgz11078c9a7066zy033 costs 164 gliders (true).
#CLL state-numbering golly
x = 1758, y = 86, rule = B3/S23
1011bo$1012b2o$1011b2o32bo$1043b2o$1037bo6b2o$1036bo$1036b3o$994bo
$984bobo8b2o$985b2o7b2o$985bo2$991bo$989bobo48bo$990b2o48bobo$
1040b2o$1051bobo$1044bo6b2o$1044bobo5bo$1044b2o2$1549bo$1360bo189b
o104bo$914bo347bo98bo175bo10b3o2bobo99bobo$912b2o5bo67bo216bobo55b
obo40bo53b3o173bobo15b2o100b2o$913b2o3bo68bobo209bo5b2o11bo43b2o
42b2o228b2o16bo$918b3o66b2o18b2o191b2o3bo10b2o33bo53b2o137bo55bo$
1008b2o189b2o16b2o33b2o2bobo186b2o53bobo42bo6bo$o5bo770bo195bo33bo
5b2o177bo58b2o4b2o49bo103bo31b2o49bo4b2o41bobo4bobo92bo9bobo$b2o3b
obo766b2o42bo6bo36bo48b2o4bo52bobo39bobo177bo63bo3bobo44bobo55bo
44bo36bobo2bobo40bo47b2o5b2o90bobo4bobo2b2o$2o4b2o141bobo624b2o40b
obo4bo36bobo48b2o2bobo52b2o41bo175b3o67b2o38bo6b2o40bo15bobo42b3o
35b2o2b2o39b3o147b2o5b2o3bo$104bo45b2o363bo302b2o5b3o34b2o48bo4b2o
96b2o233bo11bo39b2o44bobo15b2o81bo4bo45bo150bo$102bobo45bo68bo295b
obo4bo160bo95bobo413b3o52b2o49b2o46b2o149bobo86bo4bo$103b2o50bobo
60bo196bo40b2o3bobo44b2o5b2o3b2o159b2o42b2o3bobo41b2o3b2o37b2o3bo
38b2o53b2o96b2o180bo51bobo4bo49b2o45b2o54b2o89b2o88bo4b2o$107bo48b
2o60b3o48bo146b2o37bobo3b2o44bo2bo10b2o107bo51b2o40bobo3b2o41bo2bo
3bo36bo2bobobo36bo2bo51bo2bo94bo2bo76b2o54b2o44bo10b2o46bobo39b3o
6bobo4b2o37bobo4b2o7b3o31b2o5bobo40b2o93b2o2b2o35b3o3b2o$107bobo
37bo2bobo3bo50bo62b2o143b2o40bo4bo44bo2bo54bo63bo41bo54bo4bo41bo2b
o40bo2bob2o37bo2bo51bo2bo94bo2bo76bo2bo2bo49bo2bo2bo50bo2bo2bo42bo
2bo2bo36bo7bo2bo3bo38bo3bo2bo7bo33bo3bo4bo40bo3bo38bo2bo48bo4bo52b
2o40b2o45b2o9bo46b2o$51bo55b2o36bobo3b2o9b2o44b2o6bo52b2o237b2o53b
2o64b3o40bo101b2o42b2o42b2o53b2o96b2o78b6o50b6o51b6o43b6o35bo9b6o
40b6o9bo33b8o42b4o38b4o49b4o53b2o40b2o45b2o8bo47b2o$b2o9bo37bo95b
2o3bo10b2o43b2o8bo202bo80b2o16b2o37bobo3b2o59bo44b3o464bo457b2o
107b3o$2b2o3bo3bo34bo3b3o3b2o52b2o54b2o47b3o9b2o34bo16b2o39b2o41b
2o47b2o3b2o46b2o32bobo10b2o3b2o5b2o32b2o11b2o14bobo32bobo8b2o52b2o
44b2o42b2o42b2o42b2o11bo41b2o96b2o76b4o37b2o13b4o53b4o45b4o47b4o
42b4o45b4o46b4o38b4o49b4o42b2o7b4o38b4o41b4o54b4o$bo5b2o2b3o30bobo
9bobo51bobo53bobo55bo2bobo33b2o12bo2bobo35bo2bobo37bo2bobo43bo2bob
o3b2o42bo2bo35bo7bo2bo6bo3b2o33bo11bo2bo13b2o34b2o7bo2bo50bo2bo42b
o2bo40bo2bo40bo2bo40bo2bo10bobo38bo2bo94bo2bo74bo2bobob2o32b2o13bo
4bob2o48bo4bob2o40bo4bob2o42bo4bob2o37bo4bob2o40bo4bob2o41bo4bob2o
33bo4bob2o44bo4bob2o37bo8bo4bob2o30b2obo4bob2o33b2obo4bob2o46b2obo
4bo$6bobo36b2o7bobobo49bobobo40b2o9bobobo54bobobobo32bobo2bob2ob2o
2bobobobo34bobobobo36bobobobo5bo36bobobobo46bobobo42bobobo12bo43bo
bobo8bo5bo42bobobo49bobobo41bobobo39bobobo39bobobo39bobobo10b2o38b
obobo93bobobo65bobo6bobo2bob2o36b3o4b2o2bo2bobob2o48bo2bobob2o40bo
2bobob2o42bo2bobob2o37bo2bobob2o40bo2bobob2o41b2o3bob2o33bo2bobob
2o44bo2bobob2o46bo2bobob2o30b2obo2bobob2o33b2obo2bobob2o46b2obo2bo
bo$53bobobo46b2obobobo40bobo5b2obobobo54bobobobo38b2obobo2bobobobo
31b2obobobobo33b2obobobobo6bobo30b2obobobobo7b2o34b2obobobob2o36b
2obobobob2o50b2obobobob2o6bobo42b2obobobob2o41bob2obobobob2o35b2ob
obobob2o33b2obobobob2o33b2obobobob2o33b2obobobob2o44b2obobobob2o
87b2obobobob2o64b2o3b2obo3b2o41bo4bobobo3b2o48b2obo3b2o40b2obo3b2o
42b2obo3b2o37b2obo3b2o40b2obo3b2o41b2obo2bobo33b2obo3b2o44b2obo3b
2o46b2obo3b2o36bo3b2o39bo3b2o52bo3b2ob2o$53bo2bo34bo11bobobo2bo43b
o4bobobo2bo37b2o16bobo2bo43bo2b2obo2bo32bob2obo2bo34bob2obo2bo7b2o
31bob2obo2bo3bo4bobo33bob2obo2bo2bo35bob2obo2bo2bo49bob2obo2bo2bo
5b2o38bo3bo2b2obo2bo2bo40b2obobobo2bo2bo33bobobobo2bo2bo31bobobobo
2bo2bo31bobobobo2bo2bo31bobobobo2bo2bo42bobobobo2bo2bo3b2o80bobobo
bo2bo2bo3b2o58bo3bobobo4bo34b2o4bo7bobobo2bo48b2obobo2bo40b2obobo
2bo42b2obobo2bo37b2obobo2bo40b2obobo2bo41b2obobo2bo33b2obobo2bo44b
2obobo2bo46b2obobo2bo36bobo2bo39bobo2bo8bo43bobo2bob2o$47b3o4b2o
33bobo4bo7bo3b2o39bo10bo3b2o39b2o3b2o8b2o3b2o51b2o39b2o41b2o47b2o
3bobo3bo41b2o2b2o41b2o2b2o40bo14b2o2b2o43bobo2bobo5b2o2b2o44bo3b2o
2b2o33bo2bo3b2o2b2o31bo2bo3b2o2b2o31bo2bo3b2o2b2o31bo2bo3b2o2b2o4b
3o35bo2bo3b2o2b2o3b2o31bo12b2o34bo2bo3b2o2b2o3b2o62bobo2b4o34bobo
12bo2b4o53b4o45b4o47b4o42b4o45b4o46b4o38b4o49b4o51b4o38b4o41b4o7b
2o45b4o$49bo40b2o5b2o48bobo54bo6b2o7bo102bo45b2o45bobo139b2o62b2o
3bo98b2o42b2o42b2o42b2o16bo36b2o49bo12b2o32b2o71b2o7b2o42bo10bobo
443b3o107b2o$48bo47b2o50b2o6bo53bo6b2obo102bobo36b2o5bobo39b2o4bo
46b2o45b2o44b2o3b2o8b2o11b3o46b2o2b2o48b2o2b2o40b2o2b2o38b2o2b2o
38b2o2b2o38b2o2b2o5bo43b2o2b2o35b3o11bo42b2o2b2o60b2o12b2o47b2o5b
2o55b2o47b2o49b2o44b2o47b2o48b2o40b2o51b2o42bo10b2o40b2o43b2o56b2o
$156b3o10bo47b2ob2o48b3o50b2o37b2o5bo41b2o51b2o45b2o50b2o7b2o11bo
48b2o2b2o48b2o2b2o40b2o2b2o38b2o2b2o38b2o2b2o38b2o2b2o49b2o2b2o92b
2o2b2o59bo14b2o54b2o55b2o47b2o49b2o44b2o47b2o48b2o40b2o51b2o41bo
11b2o40b2o43b2o56b2o$159bo8bo91b3o7bo291bo23bo554b3o561b2o3b3o$95b
o62b2o8b3o91bo8bo145b3o138b2o115b3o287b3o4b2o169bo560b2o4bo$95b2o
2b3o42b2o19bo95bo3b3o47bo101bo139bobo21b2o94bo289bo3b2o122b2o45bo
8b2o553bo4bo$94bobo4bo41bobo18b2o51b2o48bo47b2o2b3o96bo140bo3b3o
15bobo92bo3b2o284bo6bo121b2o54b2o596bo$100bo44bo18bobo4b3o44b2o46b
o47bobo2bo243bo17bo98bobo1061bo3b2o5b2o$151b3o17bo45bo102bo243bo
115bo463bo599b2o2bobo4bobo$153bo7b2o9bo817b2o152b2o597bobo9bo$152b
o7b2o398b3o426bobo151bobo$162bo399bo428bo57bo$212b2o347bo486b2o$
158b2o53b2o833bobo693b2o$157bobo52bo1530bobo$159bo1585bo3$152b2o$
151bobo859bo$153bo857bobo34bo$995b2o15b2o33b2o$989b2o3bobo50bobo$
990b2o4bo$989bo50bo3b2o$1039b2o3bobo$1034b3o2bobo2bo$1034bo$1035bo
7$1036b2o$1035b2o$1037bo2$1016b2o$1015bobo$1017bo!
Sample occurrences
There are 14 sample soups in the Catagolue:
Unofficial symmetries
Symmetry | Soups | Sample soup links |
---|---|---|
b3s23osc_stdin | 13 | • • • • • • • • • • • • • |
oscstdin | 1 | • |
Comments (4)
Displaying comments 1 to 4.
On 2021-04-07 at 11:30:56 UTC, Ignacy.Jackl wrote:
There are no soups because that thing is very artificial, and also asymmetric.
On 2021-04-07 at 11:28:29 UTC, Ignacy.Jackl wrote:
Synthesis components:
Loaf at R-bee synthesis - 5G
Boat on domino placement - 3G
Block synthesis - 2G
edgy Eater synthesis - 4G
Block+Boat+Eater -> siamese Tub with domino with block-on-table - 14G
Domino with block-on-table -> Carrier and snake +1 - 7G
Carrier an snake +1 -> Snake - 5G
Block on domino placement - 3G
Beehive synthesis - 2G
R-bee + Beehive -> Tail + siamese Claw - 4G
Pond synthesis - 2G
Tail + Pond -> siamese Loaf - 5G
Snake -> Shillelagh with tub - 7G
one-sided Block on boat-bit - 4G
Claw with tub -> Snake +1 - 3G
Snake -> Eater - 4G
Double boat-bit on pond - 2G
Boat deletion - 1G
Block synthesis - 2G
Boat -> Eater - 4G
Rotor ignition (main step) - 15G + 3LWSS + 1MWSS = 27G
Cap -> Dock - 2G
Dock + Block -> Block - 5G
Bookend -> Bookend with tub - 5G
Tub -> Boat - 2G
Table -> Long hook - 3G
Bookend with trans-boat siamese long hook -> Long hook with cis-boat siamese bookend - 4G
Cis-boat -> Eater head - 1G
Bookend -> Very long hook with curl - 3G
Very long hook with curl deletion - 1G
Long hook -> Table - 3G
Table -> Dock - 3G
Dock -> Block - 5G
Block -> Boat - 3G x4
Boat -> Cap - 2G
Cap -> Dock - 2G
Dock -> Block - 5G
Boat -> shifted Block - 5G x2
Boat -> Cap - 2G
Cap -> Dock - 2G
Dock -> Block - 5G
On 2018-12-31 at 21:59:37 UTC, Someone wrote:
No soups? What?
On 2018-02-28 at 07:44:22 UTC, Someone wrote:
This is Pinwheel (aka Catherine wheel).
Please log in to post comments.