Cha cha (xp2_4o6o7o68zx1)
|
|
Pattern RLE
Code: Select all

Glider synthesis
Code: Select all
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH xp2_4o6o7o68zx1 costs 12 gliders (true).
#CLL state-numbering golly
x = 82, y = 24, rule = B3/S23
23bobo$23b2o$24bo$77bo$31b2o42bobo$19bo11bobo42b2o$19bobo9bo48b2o$
bo17b2o59b2o$2bo$3o25b3o44bo$30bo42bobobo$29bo43bobobobo$10bo61bob
obobo$9bo64bobobo$9b3o25b3o36bo$37bo$19b2o17bo31b2o$8bo9bobo49b2o$
6bobo11bo53b2o$7b2o65bobo$74bo$15bo$15b2o$14bobo!
Sample occurrences
There are 313 sample soups in the Catagolue:
Official symmetries
Symmetry | Soups | Sample soup links |
---|---|---|
C1 | 1 | • |
C2_2 | 1 | • |
C2_4 | 200 | • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • |
C4_1 | 1 | • |
D4_x1 | 1 | • |
G2_4 | 81 | • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • |
Inflated symmetries
Symmetry | Soups | Sample soup links |
---|---|---|
iC2_2 | 1 | • |
Unofficial symmetries
Symmetry | Soups | Sample soup links |
---|---|---|
8G_C2_4_stdin | 1 | • |
mvr_qufince_stdin | 10 | • • • • • • • • • • |
oscstdin | 1 | • |
oscthread_stdin | 1 | • |
rlifesrc_stdin | 14 | • • • • • • • • • • • • • • |
Comments (3)
Displaying comments 1 to 3.
On 2018-11-15 at 23:09:19 UTC, Someone wrote:
P4 has infinite variety, because of windmill-based stuff, or so.
On 2018-11-05 at 00:42:20 UTC, Someone wrote:
um, so did mold and fumarole just... stop existing?
or am I just misunderstanding?
On 2016-07-21 at 10:13:23 UTC, Someone wrote:
It was given the name "Cha Cha" in the life Wiki. It is endlessly extendable, but I had to find that by experimenting.
P2 oscillators are infinite in number & variety. In comparison, some periods have only one known oscillator, and 4 or 5 have none.
Please log in to post comments.